CALL FOR PAPERS Physiology and Pharmacology of Temperature Regulation Inhibition of shivering in hypothermic seals during diving
نویسندگان
چکیده
Kvadsheim, Petter H., Lars P. Folkow, and Arnoldus Schytte Blix. Inhibition of shivering in hypothermic seals during diving. Am J Physiol Regul Integr Comp Physiol 289: R326–R331, 2005. First published March 10, 2005; doi:10.1152/ajpregu.00708.2004.—The mammalian response to hypothermia is increased metabolic heat production, usually by way of muscular activity, such as shivering. Seals, however, have been reported to respond to diving with hypothermia, which in other mammals under other circumstances would have elicited vigorous shivering. In the diving situation, shivering could be counterproductive, because it obviously would increase oxygen consumption and therefore reduce diving capacity. We have measured the electromyographic (EMG) activity of three different muscles and the rectal and brain temperature of hooded seals (Cystophora cristata) while they were exposed to low ambient temperatures in a climatic chamber and while they performed a series of experimental dives in cold water. In air, the seals had a normal mammalian shivering response to cold. Muscles were recruited in a sequential manner until body temperature stopped dropping. Shivering was initiated when rectal temperature fell below 35.3 0.6°C (n 6). In the hypothermic diving seal, however, the EMG activity in all of the muscles that had been shivering vigorously before submergence was much reduced, or stopped altogether, whereas it increased again upon emergence but was again reduced if diving was repeated. We conclude that shivering is inhibited during diving to allow a decrease in body temperature whereby oxygen consumption is decreased and diving capacity is extended.
منابع مشابه
Inhibition of shivering in hypothermic seals during diving.
The mammalian response to hypothermia is increased metabolic heat production, usually by way of muscular activity, such as shivering. Seals, however, have been reported to respond to diving with hypothermia, which in other mammals under other circumstances would have elicited vigorous shivering. In the diving situation, shivering could be counterproductive, because it obviously would increase o...
متن کاملInhibition of shivering increases core temperature afterdrop and attenuates rewarming in hypothermic humans.
During severe hypothermia, shivering is absent. To simulate severe hypothermia, shivering in eight mildly hypothermic subjects was inhibited with meperidine (1.5 mg/kg). Subjects were cooled twice (meperidine and control trials) in 8 degrees C water to a core temperature of 35.9 +/- 0.5 (SD) degrees C, dried, and then placed in sleeping bags. Meperidine caused a 3.2-fold increase in core temper...
متن کاملPerioperative shivering: physiology and pharmacology.
IN homeothermic species, a thermoregulatory system coordinates defenses against cold and heat to maintain internal body temperature within a narrow range, thus optimizing normal physiologic and metabolic function. The combination of anesthetic-induced thermoregulatory impairment and exposure to a cool environment makes most unwarmed surgical patients hypothermic. Although shivering is but one c...
متن کاملEfficacy of forced-air and inhalation rewarming by using a human model for severe hypothermia.
We recently developed a nonshivering human model for severe hypothermia by using meperidine to inhibit shivering in mildly hypothermic subjects. This thermal model was used to evaluate warming techniques. On three occasions, eight subjects were immersed for approximately 25 min in 9 degrees C water. Meperidine (1.5 mg/kg) was injected before the subjects exited the water. Subjects were then rem...
متن کاملThe effects of experimentally induced hyperthyroidism on the diving physiology of harbor seals (Phoca vitulina)
Many phocid seals are expert divers that remain submerged longer than expected based on estimates of oxygen storage and utilization. This discrepancy is most likely due to an overestimation of diving metabolic rate. During diving, a selective redistribution of blood flow occurs, which may result in reduced metabolism in the hypoperfused tissues and a possible decline in whole-body metabolism to...
متن کامل